

DBL-003-1163003 Seat No. _____

M. Sc. (Sem. III) (CBCS) Examination

June - 2022

Mathematics

(3003 - Number Theory 1)

Faculty Code: 003

Subject Code: 1163003

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

Instructions:

- (1) Attempt any five questions from the following.
- (2) There are total ten questions.
- (3) Each question carries equal marks.
- 1 Answer the following:

14

- (a) Find the number of solutions of $x^{48} \equiv 9 \pmod{17}$ if exists.
- (b) Find $\sigma(307)$ and $\tau(19610)$.
- (c) Prove that, for any two non-zero integers x and $y \exists a$ and b such that ax + by = 1.
- (d) Define Euler's function for a positive integer m and write down the value of $\phi(139)$.
- (e) State, Euclid's Algorithm and verify it by an example.
- (f) Define Prime numbers and also give at least four prime numbers more than 155.
- (g) For three integers a, b and $n \in \mathbb{N}$, prove that, if $a \mid b$ then $a^n \mid b^n$.
- 2 Answer the following:

14

(a) Define L.c.m. with an example and prove that for $a,b \neq 0$ and m > 0m[a,b] = [ma,mb].

- (b) Using standard notation prove that, $\left[\frac{x}{m}\right] = \left[\frac{[x]}{m}\right]$ for any $x \in R$ and $m \ge 1$ be any integer.
- (c) Find the number of solutions of $x^{12} \equiv 16 \pmod{17}$.
- (d) Define : (i) Reduced Residue System and (ii) Solution of Congruence Equation.
- (e) Is it always true that if $x \mid y$ then $x \mid ty$ for any $t \in Z$. Justify your answer.
- (f) Show that, if $a \equiv b \pmod{m} \Rightarrow (a,m) = (b,m)$.
- (g) Find the highest power of 61 which divide 38401!.
- **3** Answer the following:

- 14
- (a) Prove that, if p is a prime number then p^2 has exactly $(p-1)\phi(p-1)$ primitive roots in (mod p^2).
- (b) Find the solutions of the congruence equation $x^4 1 \equiv 0$ 7 (mod 15) using Chinese Remainder Theorem.
- 4 Answer the following:

- 14
- (a) For any odd number g prove that 2^{α} has no primitive 7 roots for $\alpha \ge 3$.
- (b) (i) If p is a prime number of the form 4k+3 and $p \mid a^2 + b^2 \text{ then } p \mid a \text{ and } p \mid b \text{ for some } a, b \in Z.$
 - (ii) Show that, for a prime number p of the form 4k+3, p 3 cannot be expressed as a sum of squares of two integers.

5	Answer the following:		14
	(a)	(i) State, Fermat's Theorem.	2
		(ii) Find a solution of $x^{11} \equiv 5 \pmod{2^5}$ if exists.	5
	(b)	(i) State and prove, Mobius Inversion Formulae.	5
		(ii) Prove that, $\sigma(n)$ is a multiplicative function.	2
6	Answer the following:		
	(a)	State and Prove, Fundamental Theorem of Arithmetic.	7
	(b)	Let, $a,b \in Z - \{0\}$ and $m \ge 1$ If $g = \gcd(a,m)$ then the	7
		congruence equation $ax \equiv b \pmod{m}$ has a solution if	
		and only if $g \mid b$.	
7	Ans	wer the following:	14
	(a)	State, Wilson's Theorem and also verify the theorem	7
		for prime number 13.	
	(b)	Prove that, there are infinitely many prime numbers.	7
8	Ans	wer the following:	14
	(a)	State and prove, Hansel's Lemma.	7
	(b)	If $\alpha \ge 3$ be any integer then prove that the set	7
		$S = \{5,5^2,5^3,\dots,5^{2^{\alpha-2}}\} \cup \{-5,-5^2,-5^3,\dots,-5^{2^{\alpha-2}}\} $ is a	
		reduced residue system (mod 2^{α}).	
9	Answer the following:		14
	(a)	(i) If g is a primitive root of m then show that the set	5
		$S = \{1, g, g^2, \dots, g^{\phi(m)-1}\}$ is a reduced residue system	

(mod m).

(ii) Prove that, for any odd number $a,8 \mid a^2 - 1$.

2

- (b) For a prime number p and $n \ge 1$ with $p \nmid a$ then show 7 that either $x^n \equiv a \pmod{p}$ has no solution or there are (n, p-1) solutions in any C.R.S. (mod p).
- 10 Answer the following:

14

7

- (a) Suppose $f(x) \equiv 0 \pmod{p}$ has degree n then prove that n = n then prove that the n number of solutions in any C.R.S. (mod m) is $\leq n$.
- (b) If $m, m_1, m_2, \dots, m_k \ge 1$ are integers with $m = m_1 + m_2 + \dots + m_k$ then prove that

 $\frac{m!}{m_1! m_2! \dots m_k!}$ is an integer.